혼자 공부하며 함께 만드는

혼공 용어 노트

목차

가나다순

기용성 availability	383
결함 감내 fault tolerance	384
공개 키 암호화 public key cryptography	396
공개 키 인증서 public key certificate	399
공인 IP 주소 public IP address	157
광섬유 케이블 fiber optic cable	095
네임 서버 name server	253
네트워크 구조 network structure	037
네트워크 참조 모델 network reference model	055
대칭 키 암호화 symmetric key cryptography	395
도메인 네임 domain name	253
도메인 네임 시스템 DNS; Domain Name System	256
동적 IP 주소 dynamic IP address	162
디지털 서명 digital signature	401
라우터 router	171
라우팅 테이블 routing table	173
라우팅 프로토콜 routing protocol	181
로드 밸런싱 load balancing	388
명시적 혼잡 알림	
ECN; Explicit Congestion Notification	245
반이중 모드 통신	
half duplex mode commuinication	105

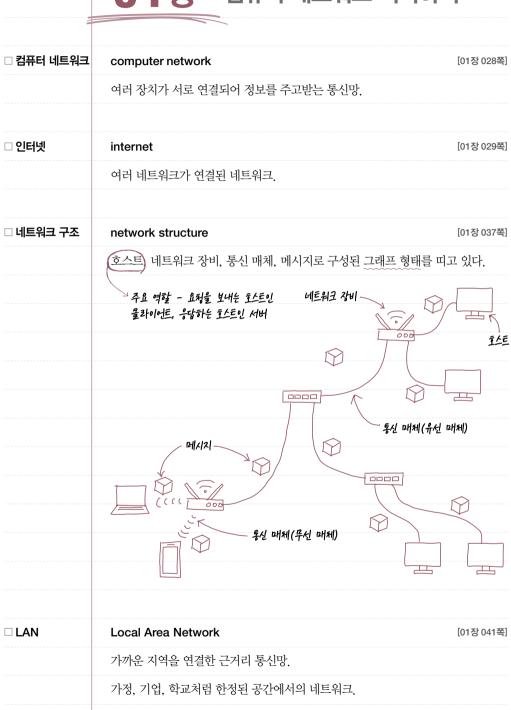
복호화 decryption	394
비연결형 프로토콜 connectionless protocol	191
사설 IP 주소 private IP address	158
스위치 switch	113
신뢰할 수 없는 프로토콜 unreliable protocol	191
암호화 encryption	394
역캡슐화 decapsulation	066
와이어샤크 WireShark	334
와이파이 Wi—Fi	412
이더넷 Ethernet	076
이더넷 프레임 Ethernet frame	081
이중화	384
인터넷 internet	029
인터넷 프로토콜 IP; Internet Protocol	131
자원 resource	262
재전송 기반 오류 제어	
retransmission based error control	227
전이중 모드 통신 full duplex mode communication	105
전파 radio wave	409
정적 IP 주소 static IP address	160
채널 channel	414
캐시 cache	317

캡슐화 encapsulation	064
컴퓨터 네트워크 computer network	028
콘텐츠 협상 content negotiation	329
쿠키 cookie	323
클래스리스 주소 체계 classless addressing	153
클래스풀 주소 체계 classful addressing	150
트위스티드 페어 케이블 twisted pair cable	091
패킷 교환 네트워크 packet switching network	046
패킷 캡처 프로그램 packet capture program	334
포트 port	194
포트 포워딩 port forwarding	202
프로토콜 protocol	051
허브 hub	104
혼잡 제어 congestion control	239
회선 교환 네트워크 circuit switching network	044
흐름 제어 flow control	235
HTTP 메서드 HTTP method	284
HTTP 상태 코드 HTTP status code	292
HTTP 헤더 HTTP header	309
MAC 주소 MAC address	082
TCP 상태 TCP State	216
TCP 순서 번호 TCP sequence number	211

TCP 연결 수립 TCP connection establishment	213
TCP 연결 종료 TCP connection termination	215
TCP 확인 응답 번호	
TCP acknowledgment number	213

목차

ABC 순


AP Access Point	415
ARP Address Resolution Protocol	139
availability	383
cache 캐시	317
channel 채널	414
circuit switching network श्रेट जर्भ पाटश्च	044
classful addressing 클래스풀 주소 체계	150
classless addressing 클래스리스 주소 체계	153
computer network 컴퓨터 네트워크	028
congestion control 혼잡제어	239
connectionless protocol 비연결형 프로토콜	191
content negotiation 콘텐츠 협상	329
cookie 쿠키	323
CSMA/CD	
Carrier Sense Multiple Access with Collision Detection	107
decapsulation वर्षाक्रे	066
decryption ^복 र्र्ड	394
digital signature 디지털 서명	401
DNS Domain Name System 도메인 네임 시스템	256
domain name 도메인 네임	253
dynamic IP address 동적 IP 주소	162
ECN Explicit Congestion Notification 명시적 혼잡 알림	245

encapsulation	064
encryption 암호화	394
Ethernet frame 이더넷 프레임	081
Ethernet 이더넷	076
ault tolerance 결함 감내	384
iber optic cable 광섬유케이블	095
ilow control 흐름 제어	235
full duplex mode communication	
전이중 모드 통신	105
nalf duplex mode communication	
반이중 모드 통신	105
HTTP header HTTP ਗੋਰ	309
HTTP HyperText Transfer Protocol	273
HTTP method HTTP 메서드	284
HTTP status code HTTP 상태 코드	292
nub 허브	104
CMP Internet Control Message Protocol	204
EEE 802,11	
nstitute of Electrical and Electronics Engineers 802.11	411
nternet 인터넷	029
P Internet Protocol 인터넷 프로토콜	131
_AN Local Area Network	041

load balancing 로드 밸런싱	388
MAC address MAC 주소	082
MTU Maximum Transmission Unit	132
name server 네임 서버	253
NAT Network Address Translation	199
network reference model 네트워크 참조 모델	055
network structure 네트워크 구조	037
NIC Network Interface Controller	088
packet capture program 패킷 캡처 프로그램	334
packet switching network मार् यक्षे पाटश्च	046
PDU Protocol Data Unit	067
port forwarding 포트 포워딩	202
port 포트	194
private IP address 사설 IP 주소	158
protocol 프로토콜	051
public IP address 공인 IP 주소	157
public key certificate 공개 키 인증서	399
public key cryptography নুসা সা প্রতিকা	396
radio wave 전파	409
resource 자원	262
retransmission based error control	
재전송 기반 오류 제어	227

router 라우터	171
routing protocol 라우팅 프로토콜	181
routing table 라우팅 테이블	173
static IP address 정적 IP 주소	160
switch 스위치	113
symmetric key cryptography 대칭 키 암호화	395
TCP acknowledgment number	
TCP 확인 응답 번호	213
TCP connection establishment TCP 연결수립	213
TCP connection termination TCP 연결 종료	215
TCP Sequence Number TCP 순서 번호	211
TCP State TCP 상태	216
TLS Transport Layer Security	401
twisted pair cable 트위스티드 페어 케이블	091
unreliable protocol 신뢰할 수 없는 프로토콜	191
URI Uniform Resource Identifier	262
VLAN Virtual LAN	118
WAN Wide Area Network	042
Wi-Fi 와이파이	412
WireShark 와이어샤크	334

컴퓨터 네트워크 시작하기

□WAN	Wide Area Net	twork		[01장 042쪽			
	먼 지역을 연결한						
□ 회선 교환	circuit switchir	ng network		[01장 044쪽			
네트워크	메시지를 주고받	기 전, 회선 설정을 통한	연결을 확립한 뒤 송수신하는	네트워크.			
□ 패킷 교환	packet switchi	packet switching network 헤더, 페이로드, 때로는 트레일러로 구성					
네트워크	메시지를때킷딘	사위로 쪼개어 송수신하	는 네트워크.				
		· ·경은 대부분 패킷 교환					
□ 프로토콜	protocol		├ 특징이 다르기에 테더도 말라짇 ────────────────────────────────────	[01장 051쪽			
	통신하기 위해 지	켜야 하는 노드 간의 ፣	합의된 통신 규칙				
□ 네트워크	network refere	ence model		[01장 055쪽			
참조 모델	네트워크의 전송	네트워크의 전송 단계를 계층적으로 표현한 모델.					
	대표적으로 OSI	모델과 TCP/IP 모델	이 있다.				
	- 0 B	응용 계층					
	丑起	! 계층					
	MIM	세션 계층					
	건속	전송 계층 전송 계층					
	네트워	1크 계층	인터넷 계층				
	데이터 킹크 계층		네트워크 액세스 계층				
	물리 계층		11-17- 701- 11-9				
	OSI	l <u>모델</u>	TCP/IP 모델				

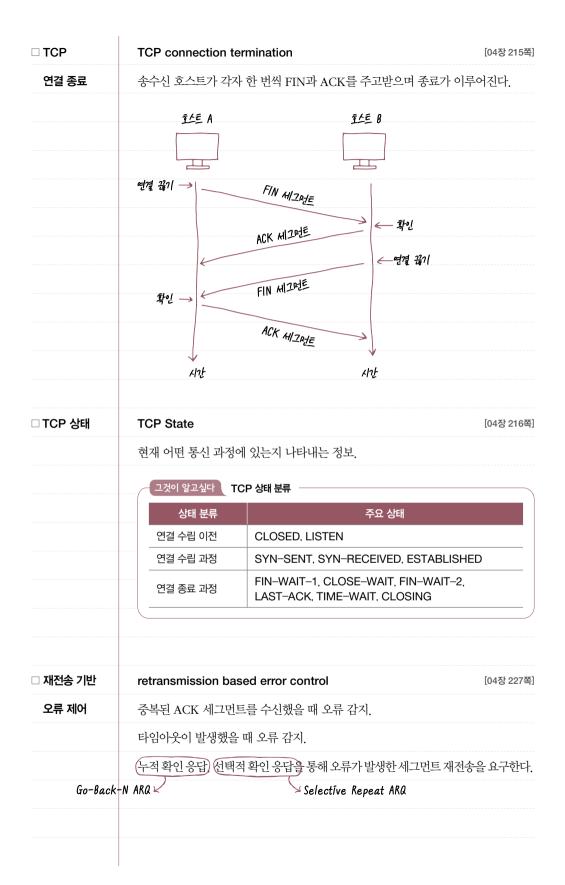
□ 캡슐화	encapsulation	[01장 064쪽]
	데이터 전송 과정에서 헤디	터(및 트레일러)를 추가해 나가는 과정.
□ 역 캡슐화	decapsulation	[01장 066쪽]
	캡슐화 과정에서 붙인 헤디	되(및 트레일러)를 제거하는 과정.
□ PDU	Protocol Data Unit	[01장 067쪽]
	네트워크 참조 모델의 각	계층에서 송수신되는 메시지 단위.
	그것이 알고싶다 OSI 모	델에서의 PDU
	OSI 계층	PDU
	응용 계층	
	표현 계층	데이터(data)
	세션 계층	
	전송 계층	세그먼트(segment), 데이터그램(datagram)
	네트워크 계층	패킷(packet)
	데이터 링크 계층	프레임(frame)
	물리 계층	비트(bit)
	02장	물리 계층과 데이터 링크 계층
□ 이더넷	Ethernet (참고용어) IEEE	802.3 [02장 076쪽]
	연결 매체의(규격,)송수신	되는 프레임의 형태 등을 정의한 네트워크 기술.
	>이터넷 I	F운 규격 = IEEE 802.3
	이더넷 통신 매체의 경우	전송 속도BASE-추가 특성' 형식으로 표기.

	Ethernet frame					[02장 081쪽	
	이더넷에서 송수신되는 프레임 형태.						
	이더넷 프레인 구성						
	正到6月	# AAC		5신지 IC 주소	타입/길이	데이터	FCS
□ MAC 주소	MAC ad	dress					[02장 082쪽
	네트워크	인터페이스	마다 부여되	는 물리적 주	주소.		
	(6바이 <u>트</u> (4	48비트) 16	진수 열두 자	리로 구성.			
			≠ o=1: AB	:CD:EF:AB:CD	:EF		
□NIC	Network	Interface	Controller				[02장 088쪽
	호스트와	통신 매체 /	사이의인터되	페이스)역할-	을 담당하는	네트워크 장	}-ㅂ].
				≯o=l: MAC 2	우소 부터		
□ 트위스티드	twisted	pair cable					[02장 091쪽
페어 케이블	전기적 신호를 주고받는 유선 연결 매체.						
	실드에 따라 구분 가능. <u>보게이드 실드(S), 된실 실드(F), 무실드(U)</u> 가능						
	수 유형에 따라 XX/YTP 형태로 표기 기타						
	카테고리	에 따라 구녂	부가능.	실드 유령어	l 따라 XX/Y		
	카테고리	에 따라 구분	분가능.	실드 유터어	l∝t≥t XX/Y		
			분 가능. 위스티드 페어 #				
	그것이	알고싶다 _ 트	위스티드 페어 #	케이블의 주요 ㅋ	'H테고리	TP 형태로 표7	1
	그것이 특징 지원	알고싶다 <u>트</u> Cat5	위스티드 페어 # Cat5	에이블의 주요 ۶ Cat6 250MHz	HI고리 Cat6a 500MHz	TP 형태로 표7 Cat7	Cat8
	그것이 특징 지원 대역폭 주요 대응	알고싶다 Cat5 100MHz 100BASE	Cat5 100MHz 1000BASE	에이블의 주요 카 Cat6 250MHz 1000BASE	Cat6a 500MHz	Cat7 600MHz 10GBASE	Cat8 2GHz 40GBASE
	고것이 특징 지원 대역폭 주요 대응 규격	알고싶다 Cat5 100MHz 100BASE -TX	Cat5 100MHz 1000BASE -T	M이블의 주요 카 Cat6 250MHz 1000BASE -TX	HI고리 Cat6a 500MHz 10GBASE -T	Cat7 600MHz 10GBASE -T	Cat8 2GHz 40GBASE -T
□ 광섬유	고것이 특징 지원 대역폭 주요 대응 규격	알고싶다 Cat5 100MHz 100BASE -TX 100Mbps	Cat5 100MHz 1000BASE -T	M이블의 주요 카 Cat6 250MHz 1000BASE -TX	HI고리 Cat6a 500MHz 10GBASE -T	Cat7 600MHz 10GBASE -T	Cat8 2GHz 40GBASE -T 40Gbps
□ 광섬유 케이블	그것이 특징 지원 대역폭 주요 대응 규격 전송 속도	알고싶다 Cat5 100MHz 100BASE -TX 100Mbps	Cat5 100MHz 1000BASE -T	M이블의 주요 카 Cat6 250MHz 1000BASE -TX 1Gbps	HI고리 Cat6a 500MHz 10GBASE -T	Cat7 600MHz 10GBASE -T	Cat8 2GHz 40GBASE -T 40Gbps
□ 광섬유 케이블	고것이 특징 지원 대역폭 주요 대응 규격 전송 속도	알고싶다 Cat5 100MHz 100BASE -TX 100Mbps	Cat5 100MHz 1000BASE -T 1Gbps	M이블의 주요 카 Cat6 250MHz 1000BASE -TX 1Gbps	Cat6a 500MHz 10GBASE -T 10Gbps	Cat7 600MHz 10GBASE -T 10Gbps	Cat8 2GHz 40GBASE -T
	고것이 특징 지원 대역폭 주요 대응 규격 전송 속도	알고싶다 Cat5 100MHz 100BASE -TX 100Mbps	Cat5 100MHz 1000BASE -T 1Gbps	M이블의 주요 카 Cat6 250MHz 1000BASE -TX 1Gbps	Cat6a 500MHz 10GBASE -T 10Gbps	Cat7 600MHz 10GBASE -T 10Gbps	Cat8 2GHz 40GBASE -T 40Gbps

□ 허브	hub 참고용어 콜리전 도메인	[02장 104
	물리 계층의 네트워크 장비.	
주소 개념이 없음	반이중 모드로 통신하며, 전달받은 신호를 다른 모든 포트로 내보나	기만 한다.
	하나의 허브에 연결된 호스트들이 동시에 신호를 송신하면 충돌이	발생하고, 연
	된 모든 호스트는 같은 콜리전 도메인에 속한다.	
□ 반이중	half duplex mode communication	[02장 105
모드 통신	데이터를 한 번에 한 방향으로만 전송할 수 있는 통신 방식.	
□ 전이중	full duplex mode communication	[02장 105
모드 통신	데이터를 동시에 양방향으로 전송할 수 있는 통신 방식.	
□ CSMA/CD	Carrier Sense Multiple Access with Collision Detection	[02장 107
	반이중 이더넷의 충돌 방지 프로토콜.	
	충돌 발생 시 임의의 시간 동안 대기 후 재전송.	
□ 스위치	switch 주소 개념이 있음(MAC 주소)	[02장 113
	데이터 링크 계층의 네트워크 장비.	
	전이중 모드로 통신하며, MAC 주소 테이블을 바탕으로 MAC 주소	를 학습한다.
□VLAN	Virtual LAN	[02장 118
	가상의 LAN.	
	스위치 한 대로 가상의 LAN을 만드는 방식.	
	포트 기반 VLAN과 MAC 기반 VLAN이 있다.	
변경된 <u>矩</u> 가 호스	를가	
き VLAN 全 星で	5/7-1 555 11 AND 1-1-1	

03장 네트워크 계층

	U Ĵ 장 네트워크 계층	
□ 인터넷	IP; Internet Protocol [03장 131	쪽]
프로토콜	주소 지정과 단편화를 수행하는 네트워크 계층의 프로토콜.	
	IP 버전에는 IPv4와 IPv6이 있다.	
	IPv4 주소 IPv6 주소	
	IPv4 子生	
□ MTU	Maximum Transmission Unit [03장 132	쪽]
	한 번에 전송 가능한 IP 패킷의 최대 크기.	
	일반적으로 1500바이트이며, MTU 크기 이하로 나누어진 패킷은 수신지에 도	착
	하면 다시 재조합된다.	
□ARP	Address Resolution Protocol [03장139	쪽]
	IP 주소를 MAC 주소에 대응하기 위해 사용되는 프로토콜.	
	(ARP의 동작 순서)	
	→ O ARP 요청 (브로드케스트 메시지) ② ARP 응답	
	③ ARP 레이블 갱신	
□ 클래스풀	classful addressing [03장150	쪽]
주소 체계	클래스별로 네트워크 크기를 구분하는 IP 주소 체계.	
	A 클래스, B 클래스, C 클래스로 네트워크와 호스트 주소를 구분할 수 있다.	


	네트워크 주소 호스트 주소 A 물래스 0	
□ 클래스리스	classless addressing	[03장 153쪽]
주소 체계	클래스에 구애받지 않고 네트워크를 조금 더 정교하게 나눌 수 있는 IP 서브넷 마스크로 네트워크와 호스트 주소를 구분한다. IP 주소사에서 네트워크 주소는 1, 호스트 주소는 0으로 표기한 비트널	주소 체계.
□ 공인 IP 주소	public IP address	[03장 157쪽]
	전 세계에서 고유한 IP 주소.	
	일반적으로 인터넷을 이용할 때 사용하는 주소로 ISP나 공인 IP 주소 현	할당 기관을
	통해 할당받을 수 있다.	
□ 사설 IP 주소	private IP address	[03장 158쪽]
	사설 네트워크에서 사용하는 IP 주소.	
	사설 IP 주소로 사용할 수 있는 IP 주소 대역이 정해져 있다.	
	• 10.0.0.0/8 (10.0.0.0 — 10.255.255.255) • 172.16.0.0/12 (172.16.0.0 — 172.31.255.255) • 192.168.0.0/16 (192.168.0.0 — 192.168.255.255)	

□ 정적 IP 주소	static IP address 참고용어 정적 할당	[03장 160쪽]	
	호스트에 직접 부여한 고정된 IP 주소.		
	일반적으로 IP 주소, 서브넷 마스크, 게이트웨이(라우터)	주소, DNS 주소를 입력해	
	서 부여한다.		
□ 동적 IP 주소	dynamic IP address (참고용어) 동적 할당	[03장 162쪽]	
	호스트에 자동으로 부여된 IP 주소.		
	DHCP를 통해 IP 주소를 임대받을 수 있고, 임대받은	IP 주소에는 임대 기간이	
	존재한다.		
	동적 IP 주소 할당을 위해 사용되는 프로토콜		
□ 라우터	router	[03장 171쪽]	
	네트워크 계층의 대표 장비.		
	패킷이 이동할 최적의 경로를 설정하고, 그 경로로 패킷	을 내보낸다.	
	≥이를 위해 라우팅 레이블 활용		
□ 라우팅 테이블	routing table	[03장 173쪽]	
	특정 수신지까지 도달하기 위한 정보를 명시한 표와 같은	은 정보.	
	일반적으로 수신지 IP 주소와 서브넷 마스크, 다음 홉, 나	네트워크 인터페이스, 메트	
	릭이 명시된다.		
□ 라우팅	routing protocol	[03장 181쪽]	
프로토콜	패킷이 이동할 최적의 경로를 찾기 위한 프로토콜. 대표	[적인 EGP = AS 간의 통신에서 사용되는	
	AS 내에서 수행되느냐, 외부에서 수행이 가능하느냐에	따라(IGP, EGP로 나누어	
	진다. 대표적인 IGP = 거리 #	벡터를 활용하는 RIP.	
	킹크 상태를 활용하는 OSPF		

0 4 장 전송 계층

□ 신뢰할 수	unreliable protocol (참고용어) 최선형 전	달 [04장 191쪽]		
없는	패킷이 수신지까지 제대로 전송되었다는 확인을 하지 않는 프로토콜.			
프로토콜	대표적인 예시로 IP가 있다. 이를 보완하	는 프로토콜이 전송 계층의 TCP다.		
□ 비연결형	connectionless protocol	[04장 191쪽]		
프로토콜	송수신 과정에서 사전 연결 수립 작업을	거치지 않는 전송 특성.		
	대표적인 예시로 IP가 있다. 이를 보완하	는 프로토콜이 전송 계층의 TCP다.		
□포트	port	[04장 194쪽]		
	응용 계층의 애플리케이션 프로세스를 스	별하는 정보. 글라이센트가 주로 활용하는 또		
	포트 번호의 범위에 따라 잘 알려진 포트, 등록된 포트, 동적 포트로 나누어진다.			
	서버가 주로 활용하는 또E			
	그것이 알고싶다 모트 번호 범위			
	포트 종류	포트 번호 범위		
	잘 알려진 포트(well known port)	0~1023		
	등록된 포트(registered port)	1024~49151		
	동적 포트(dynamic port)	49152~65535		
□ NAT	Network Address Translation	[04장 199쪽]		
⊔ INAI		[048 1884]		
	IP 주소를 변환하는 기술.			
	포트 기반의 NAT를 NAPT라 하며, NA	PT는 IP 주소와 더불어 포트 번호도 함께		
	변환하는 NAT다.			

□ 포트 포워딩	port forwarding [04장 202	쪽]	
	네트워크 내 호스트에 IP 주소와 포트 번호를 미리 할당하고, 해당 IP 주소:포	트	
	번호에 패킷을 전달하는 기능.		
□ICMP	Internet Control Message Protocol [04장 204	쪽]	
	IP의 신뢰할 수 없는 전송 특성과 비연결형 전송 특성을 보완하기 위해 전송 과	정	
	의 피드백 메시지를 제공하는 프로토콜.		
□ TCP 순서 번호	TCP sequence number [04장 211	쪽]	
	송수신되는 세그먼트의 올바른 순서를 보장하기 위해 세그먼트 데이터의 첫 바	ာ	
	트에 부여되는 번호.		
□ TCP 확인	TCP acknowledgment number [04장 213	쪽]	
응답 번호	TCP 순서 번호에 대한 응답으로, 다음으로 수신하기를 기대하는 순서 번호.		
□ TCP 연결 수립	TCP connection establishment [04장 213	쪽]	
	쓰리 웨이 핸드셰이크를 통한 연결 수립.		
	SYN, SYN+ACK, ACK 세그먼트를 주고받으며 연결을 수립한다.		
	五 五 五 五 五 五 五 五 五 日 日 日 日 日 日 日 日 日 日 日		
	연결 시각 → SYN All ZINJE		
	SYN+ACK MIZ먼트 ← 확인		
	That		
	ACK MIZE		
	AIL AIL		

□ 흐름 제어	flow control	[04장 235쪽]
	수신자의 처리 속도를 고려하며 전송하는 방식.	
	슬라이딩 윈도우가 사용된다.	
□ 혼잡 제어	congestion control	[04장 239쪽]
	네트워크의 혼잡도를 판단하고 혼잡한 정도에 따라 전송량을 조절하	는 방식.
	다양한 혼잡 제어 알고리즘이 사용된다.	
	▲ 스킨 시작, 혼잡 회피, 빠른 회복 등의 알고리준	
□ 명시적	ECN; Explicit Congestion Notification	[04장 245쪽]
혼잡 알림	네트워크 중간 장치(주로 라우터)의 도움을 받아 혼잡 제어를 수행하	는 방식.
	ΛΓ	
	U → 응용 계층	
	000 00/10	
<i>a</i>		
□ 도메인 네임	domain name	[05장 253쪽]
	IP 주소와 대응되는 문자열 형태의 호스트 특정 정보.	
	도메인 네임의 구조.	
	3단계 도메인 2단계 도메인 최상위 도메인 후트 도메인	
	www.example.com.	
	www.example.com.	
	→ Fadn	
□ 네임 서버	name server	[05장 253쪽]
	도메인 네임을 관리하는 서버.	
	계층적으로)구성되어 있다.	
	☞예: 루트 네잎 서버, TLD 네잎 서버	

□ 도메인 네임	DNS; Domain Name	System	[05장 256쪽]
시스템	계층적이고 분산된 도메	인 네임 대한 관리 체계.	
	도메인 네임을 관리하는	프로토콜을 지칭하기도 한다.	
□ 자원	resource		[05장 262쪽]
	네트워크상의 메시지를	통해 송수신하고자 하는 최종 대상.	
□URI	Uniform Resource Ide	entifier	[05장 262쪽]
	자원을 식별할 수 있는 기	정보.	
	• URL:) 위치를 기반으로 자원	시별	
	• URN: 이름을 기반으로 자원	싱 벌	
	foo://www.exam	ple.com:8042/over/there?n	ame=ferret#nose
	scheme aut	thorsty path	query fragment
□HTTP	HyperText Transfer P	rotocol	[05장 273쪽]
	응용 계층에서 정보를 주	고받기 위한 프로토콜.	
	HTTP의 특징		
	0 요청-응답 기반의 프로	로	
	② 미디어 독립적 프로토		
			
□ HTTP	HTTP method		[05장 284쪽]
메서드		원에 대해 수행할 작업의 종류.	
- 1 1. 1 			
	그것이 알고싶다 주요 나		
	HTTP 메서드	설명	
	GET	자원을 습득하기 위한 메서드	
	HEAD	GET과 동일하나, 헤더만을 응답받는 머 서버로 하여금 특정 작업을 처리하게끔 :	
	POST PUT	지미도 아버금 특징 직접들 서디아게음 (자원을 대체하기 위한 메서드	이는 메시트
	PATCH	자원의 대한 부분적 수정을 위한 메서드	
	DELETE	자원의 대한 구분적 구경을 위한 메시드 자원을 삭제하기 위한 메서드	
	DELETE	지난을 그에에서 다른 배서는	

□ НТТР	HTTP status of	ode	[05장 292쪽]	
상태 코드	요청 메시지에 다	개한 결과를 나타내는	세 자리 정수.	
	백의 자릿수로 설	상태 코드의 유형을 일	· 수 있다.	
	그것이 알고싶다	주요 HTTP 상태 코드	유형	
		상태 코드	설명	
	100번대(100		정보성 상태 코드	
	200번대(200	<u> </u>	성공 상태 코드	
	300번대(300	·	리다이렉션 상태 코드 ===================================	
	500번대(500	·	서버 에러 상태 코드	
			71-11-11-11-11-11-11-11-11-11-11-11-11-1	
□ HTTP 헤더	HTTP header		[05장 309쪽]	
	HTTP 메시지어	대한 부가 정보.		
		HTTP 메시지에 다양	하 체더가 포하되다	
	207-4-01	1111 1111 1111 1111 1111	·····································	
			HTTP 요치 메시지일 경우 요청 라인	
	HTTP 메시지 =	시작 라인(출바꿈) <		
		필드 라인* (줄바꿈) (줄바꿈)	HTTP इस सीर/212 सून रीम अंध	
		(30元) 메시지 본문**	- "バ시킬 경우 · 10	
	* 07H 01Kf			
	** 선택정			
□ 캐시	cache		[05장 317쪽]	
	대역폭 낭비, 응답 지연을 방지하기 위해 사본을 임시 저장하는 기술.			
	웹 브라우저, 중간 서버에 저장된다.			
	캐시에 유효 기간을 설정할 수 있으며, 날짜(Last-Modified) 혹은 엔티티 태그			
	(Etag)를 기반으로 캐시 신선도를 재검사할 수 있다.			

□쿠키	cookie	[05장 323쪽]
	클라이언트의 상태를 알 수 있는 이름, 값, 속성으로 이루어진 정보.	
	서버에 의해 생성되고, 클라이언트가 저장한다.	
□ 콘텐츠 협상	content negotiation	[05장 329쪽]
	같은 URI에 대해 가장 적합한 자원의 표현을 제공해 주는 메커니즘.	
	* 수신 가능한 자원의 형태	
	NC ~	
	이 이 실습으로 복습하는 네트	워크
□ 와이어샤크	WireShark	[06장 334쪽]
	대중적인 패킷 캡처 프로그램.	
	캡처된 패킷에 대해 다양한 필터링을 할 수 있다.	
□ 패킷 캡처	packet capture program	[06장 334쪽]
프로그램	네트워크에 송수신되는 패킷을 모니터링하고 분석할 수 있는 프로그램	

	N7	
	장 네트워크 심화	
□ 기용성	availability 참고용에 고가용성	[07장 383쪽]
	컴퓨터 시스템이 특정 기능을 실제로 수행할 수 있는 시간의 비율.	
	전체 사용 시간 중 정상적인 사용 시간.	
□ 결함 감내	fault tolerance	[07장 384쪽]
	문제가 발생하더라도 기능할 수 있는 능력.	
□ 이중화		[07장 384쪽]
	대표적인 이중화 구성 방식으로 액티브/액티브, 액티브/스탠바이가 있	J다.
	나아가 장비 혹은 프로그램을 여러 개 두는 구성 방식은 다중화라 한다	ł.
□ 로드 밸런싱	load balancing	[07장 388쪽]
	로드 밸런서를 이용해 트래픽을 고르게 분배하는 방식.	
□ 암호화	encryption	[07장 394쪽]
	원문 데이터를 이해할 수 없는 암호문으로 변형하는 것.	
	암호화에 사용되는 정보를 키라고 부른다.	
□ 복호화	decryption	[07장 394쪽]
	암호문을 다시 원문 데이터로 변형하는 것.	
□ 대칭 키 암호화	symmetric key cryptography	[07장 395쪽]
	암호화와 복호화 시 같은 키를 사용하는 암호화 방식.	

□ 공개 키 암호화	public key cryptography	[07장 396쪽]
	암호화와 복호화 시 서로 다른 키를 사용하는 암호화 방식.	
	흔히 한 키를 공개 키, 다른 키를 개인 키라 부른다.	
	한 키로 암호화했다면 다른 키로 복호화할 수 있다.	
□ 공개 키 인증서	public key certificate	[07장 399쪽]
	공개 키, 공개 키의 유효성을 입증하기 위한 전자 문서.	
	공개 키 인증서를 발급하고 검증하는 기관을 CA라고 부른다.	
□ 디지털 서명	digital signature	[07장 401쪽]
	개인 키로 암호화된 메시지를 공개 키로 복호화함으로써 신원을 증명하	하는 절차.
□TLS	Transport Layer Security	[07장 401쪽]
	인증과 암호화를 수행하는 프로토콜.	
	TLS는 SSL을 계승한 프로토콜이며, HTTPS는 TLS를 기반으로 인증	및 암호화를
	수행하는 대표적인 프로토콜이다.	
	TLS 핸드셰이크를 통해 암호화에 사용할 키, 인증서를 주고받을 수 있	J다.
□ 전파	radio wave	[07장 409쪽]
	무선으로 정보를 주고받는 수단.	
	전파 통신을 위한 주파수 대역은 정해져 있다.	
	Institute of Electrical and Electronics Engineers 802.11	[07장 411쪽]
802,11	무선 LAN을 위한 표준 규격.	
□ 와이파이	Wi-Fi	[07장 412쪽]
	특정 IEEE 802.11 규격을 준수하는 무선 LAN 기술.	

□ 채널	channel [07장 414	쪽]
	무선 네트워크에서 사용될 특정 주파수 대역.	
	채널 번호로 구분할 수 있으며 선택된 채널은 겹치는 주파수 대역을 사용하지 않	는
	것이 좋다.	
□AP	Access Point [07장 415	쪽]
	무선 통신 기기들을 연결하여 무선 네트워크를 구성하는 장치.	
	SSID는 AP를 중심으로 구성된 무선 네트워크를 식별하는 정보를 의미한다.	
	와이파이 이름인 경우가 많음	

MEM0